Course File

Session-2016- Semester Spring 2020

ME - 414 Energy Resources & Utilization

Instructor

Dr. Muhammad Farooq

Assistant Professor, Mechanical Engineering-KSK

Department of Mechanical Engineering
University of Engineering & Technology
Lahore. (KSK Campus)

Course File Contents

1	Course Time Table			
	Course Outline			
2	List of CLO's			
	Detailed Lecture Plan			
	Schedules:			
3	Semester Calendar			
3	Mid Term Exam Date Sheet			
	Final Term Exam Date Sheet			
4	Sample Quizzes (Graded Best, average and worst cases)			
5	Question Paper and Solution of Mid Term Examination			
6	Mid Term Exams Answers Sheets (Graded Best, average and worst cases)			
7	Question Paper and Solution of Final Term Examination			
8	Final Term Exams Answers Sheets (Graded Best, average and worst cases)			
9	Sample Assignments (Graded Best, average and worst cases)			
10	Result			
11	Lecture Notes			

BSc. Mechanical Engineering (Session – 2016)

8th Semester

B.SC. Mechanical Engineering Course Skeleton					
Course:	Name of Instructor:	Class	Semester	Duration	
Energy Resources and Utilization	Dr. Muhammad Farooq	2016	8th	Jan - Jun, 2020	
Credit hours:	(Theory)	Class Timings: Tuesday 01:00 pm – 3:00 pm Section A Thursday 10:00 am – 12:00 Section B			

Course Outline:

Mineral energy resources, fossil fuels in solid, liquid and gaseous states. Renewable energy resources, nuclear energy. Hydro-electric power, solar energy, fuel, cells, wind powers, wave and tidal power, geothermal energy, environmental impact, assessment of alternative energy sources energy storage systems. Energy analysis, principles of energy analysis, energy analysis methodologies, statistical analysis, input/output table techniques and process energy analysis, case studies, alternative chemical fuel, buildings, electrical poor generation. Energy and economics, projecting appraisal techniques, energy investment and the discount rate, cost benefit assessment of alternative energy sources economic versus energy analysis. Energy and society: The technology-society relationship. Alternative (Advanced versus intermediate technologies and their social implications. Government influence on energy demand energy and the thin energy conservation, Scope, techniques and optimization of energy system designs, energy system modeling etc.

Books and references:

- 1. Renewable Energy Resources by John Twidell, Tony Weir
- 2. Renewable Energy by Godfrey Boyle
- 3. Sustainable Energy Choosing among options by Tester, Driscoll, Golay

Components of Assessment:

Assessment during the semester (Quizzes and CEP) = 30 marks

Mid Term = 30 marks

End Term Examination = 40 marks

Total = 100 marks

Course Outline (Week and Lecture Wise)

Wee k No.	Course Content to be Covered				
	Description				
1	Introduction	Introduction Renewable and fossil fuels, Introduction to Renewable Energy Technologies, Current World Energy Trends, Introduction to Coursework / CEP.			
2	Solar Energy	Introduction to solar energy, current status of solar energy utilization, basic phenomenon, Solar water heating, Building application of solar energy, Discussion			
3	Solar Concentrators, & Photovoltaic	rators, working principle of Solar photovoltaic, their types and applications.			
4	Wind Energy	Introduction to wind energy, Current status of wind energy utilization, wind power curve, Wind turbines, their types and working principles	CLO1/PLO1 covered		
5	Tidal Energy (Quiz 1)	Introduction to Tidal Energy, Utilization of tidal energy, current status	CLO1/PLO1 covered		
6	Geothermal Energy				
7	OTEC	OTEC Introduction to OTEC Discussion relevant to all energy resources covered after midterm exams			
8	Hydro Electric Energy	Introduction to Hydro Electric Energy, Utilization of Hydro Electric Energy, current status	CLO2/PLO2 covered		
9	Mid Term Examination				

	ODL Lecture Plan (7 Lectures)				
10	Lect. No. 1 Bioenergy	Introduction to bioenergy, Classification of biofuels, Explain the various processes used in the utilization of biomass. http://sustainable-energy-research.weebly.com/uploads/2/9/3/8/2938513/lec.4_biomass.pdf	CLO1/ PLO7		
11	Lect. No. 2 Hybrid Energy Sources	Hybrid energy sources status of Pakistan: An optimal technical proposal to solve the power crises issues http://sustainable-energy-research.weebly.com/uploads/2/9/3/8/2938513/hybrid_energy_sources_status_of_pakistanan_optimal_technical_proposal_to.pdf	CLO2/PLO6		
12	Carbon capture for sustainable environment	What is CCS, How CO2 is captured, technologies for CO2 capture, Prepost and oxy combustion systems, Underground geological CO2 storage, Applications http://sustainable-energy-research.weebly.com/uploads/2/9/3/8/2938513/lect.5b1 . carbon-capture-and-storage.pdf	CLO3/PLO7		
13	Lect. No. 4 Energy Management and Auditing	Introduction to Energy management, energy auditing, steps in energy management, review of energy management systems, applications, ISO50001 http://sustainable-energy-research.weebly.com/uploads/2/9/3/8/2938513/energy_auditing.pdf	CLO3/PLO7		
14	Energy Efficiency In Buildings Methodology	Typical energy flow in buildings, Determining a building's energy performance, Benchmarks, Certifying energy efficiency http://sustainable-energy-research.weebly.com/uploads/2/9/3/8/2938513/energy_efficiency_in_buildings_methodologypdf	CLO3/PLO7		
15	Lect. No. 6 Energy policy & economy	Development of energy policy, key roles in the development of a corporate energy policy, Analyzes policy options for addressing renewable energy development, environmental sustainability, and green growth. Seven steps for energy management https://elearning-adbi.org/courses/energy-economics-environment-and-policy/	CLO3/PLO7		

		http://sustainable-energy- research.weebly.com/uploads/2/9/3/8/2938513/module_4_developing_a n_energy_policy.pdf http://sustainable-energy- research.weebly.com/uploads/2/9/3/8/2938513/module_9_7_steps_for_e nergy_management.pdf Case studies will be discussed and solved to design energy systems to meet specific energy demand.	CLO3/PLO7
16	Lect. No. 7 Case Studies	CASE STUDY 1. Sustainable energy authority in Australia CASE STUDY 2. Improving energy efficiency in Ekurhuleni Metropolitan Municipal (EMM) buildings, South Africa CASE STUDY 3. Efficient lighting in the Latvian Academy of Sport Education (LASE), Latvia CASE STUDY 4. Passive design in local government offices of Ireland http://sustainable-energy-research.weebly.com/uploads/2/9/3/8/2938513/energy_efficiency_in_buildings_book.pdf	
17	End Term Examination		

University of Engineering and Technology Lahore, (KSK Campus) Department of Mechanical Engineering

Energy Resources and Utilization

Sr.	CLO Statement	Domain		Taxonomy	PLO
No.				level	
1.	Explain the fundamental of renewable energy resources and their differences compared to non-renewable resources.	Cognitive	C.P. 1 (10%) Quiz 1 (10) + Mid Term (10)	2	1
2	Design an economically feasible renewable/hybrid energy systems meeting specific energy demands, with minimal impact on the environment.	Cognitive	C.P. 2 (10%) +Quiz 2 (10) +Mid Term (20)	4	6
3.	Analyze the key energy economics issues, policy options for addressing renewable energy development, environmental sustainability, and green growth.	Cognitive	C.P. (10%) End Term (40)	5	7